

Surname

Other names

Scholarship Examination

Subject: CHEMISTRY

Time: 1 Hour

You must have:

Calculator

Ruler

Total Marks

60

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - There may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60
- Each multiple choice question is a mark
- The marks for **each** question are shown in brackets
 - Use this as a guide as to how much time to spend on each question.

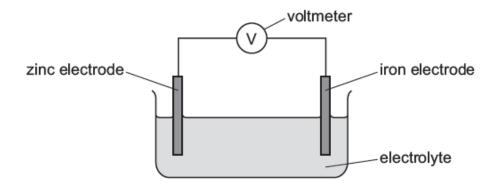
Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English (languages please change this).
- Try to answer every question.
- Check your answers if you have time at the end.

				7
0	Helicia 2	1 1	Krypton 36 131 Xe Xenon 54 222 RAN Radon R	
7			Bromine Bromine 35 127 127 127 Astatine Astatine	
9		Oxygen 8 8 32 Sulfur 16	Selenium 34 128 128 Tellurium 52 210 Poolium 84 84 84 84 84 84 84 84 84 84 84 84 84	
2		N V V V V V V V V V V V V V V V V V V V	AS AS 33 Sb Sb Sb St St Sc Sb Sb Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc Sc	3
4		C Carbon 6 8 Silicon 14	Ge Ge 32 32 119 Sn Tin 50 Pb Lead	5
ဗ		Boron 5 27 All Aluminium 13	Gaalium 31 115 115 49 204 The Indium Control C	
			CA Cadmium 48 Hg	3
			Copper 29 108 Ag Silver 47 197 Au Gold	
			Nickel 28 28 106 Pdl Palladium 46 195 Pt Patinum	2
			S9 CO Cobatt 27 103 Rh Chodium 45 192 Iridium	
			Fe Iron 26 Iro	<u>\$</u> 6
Group	Hydrogen		Mn Manganese 25 99 TC Technetium 186 Re Rhenium 196	1
			S2 S5	-
			V Vanadium 23 93 93 Niobium N 181 Ta	\dashv
			Titanium 22 22 22 24 21 21 21 21 21 21 21 21 21 21 21 21 21	┪
			Scandium 21 XYTINUM 39 139 Lanthanum Lanthanum	
8		Be Beryllium 4 24 Mg Magnesium 12	Calcium 8 88 88 Sr Strontium 8 88 88 84 84 84 84 84 84 84 84 84 84 8	
-		Lithium 3 3 23 Na Sodium M 11	Potassium 19 86 Rubidium 37 133 Caesium Caesium Caesium	
	Period 1	α σ	4 10 0	
nemistry		2	Peponi School	March 2023

Chemistry 2 Peponi School March 2023

Q1. Ca	Q1. Calcium hydroxide, Ca(OH) ₂ , is slightly soluble in water.				
(a	(a) Calcium hydroxide can be made by the reaction of calcium with water.				
	(i)	Write the chemical equation for this reaction.			
	(ii)	Name another substance that reacts with water to form calcium hydroxide.			
			[1]		
(b		nen calcium hydroxide dissolves in water, it dissociates into ions and forms a weakly alka ution.	line		
	(i)	Suggest the pH of aqueous calcium hydroxide.			
	(ii)	Give the formula of the ion responsible for making the solution alkaline.	[1]		
			[1]		
(c)) Lim	newater is a saturated solution of calcium hydroxide, Ca(OH) ₂ (aq).			
	(i)	Name the gas limewater is used to test for.			
	(ii)	Suggest what is meant by the term saturated solution.			
	(iii)	Describe how you would make a sample of limewater starting with solid calcium hydrox	ide.		
			[2]		
	(iv)	Describe how you would test for the presence of calcium ions in a sample of limewate	∍r.		
		test			
		observations			
			[3]		


(d) A 25.0 cm³ sample of limewater is placed in a conical flask. The concentration of Ca(C limewater is determined by titration with dilute hydrochloric acid, HC1.					
	(i)	Name the item of apparatus used to measure the volume of acid in this titration.			
((ii)	State the type of reaction which takes place.			
<i>(</i> :	\	As well as limpwater and dilute hydrochleric acid, state what other type of substance must			
(1	iii)	As well as limewater and dilute hydrochloric acid, state what other type of substance must be added to the conical flask.			
		[1]			
(i	iv)	The equation for the reaction is shown.			
		$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$			
		$20.0\mathrm{cm^3}$ of $0.0500\mathrm{mol/dm^3}$ HC l reacts with the $25.0\mathrm{cm^3}$ of $\mathrm{Ca(OH)_2}$.			
		Determine the concentration of $Ca(OH)_2$ in g/dm^3 . Use the following steps.			
		• Calculate the number of moles in 20.0 cm³ of 0.0500 mol/dm³ HC1.			
		mol			
		 Determine the number of moles of Ca(OH)₂ in 25.0 cm³ of the limewater. 			
		mol			
		 Calculate the concentration of Ca(OH)₂ in mol/dm³. 			
		mol/dm³			
		 Determine the concentration of Ca(OH)₂ in g/dm³. 			
		g/dm³ [5]			
		[Total: 21]			

Chemistry 4 Peponi School March 2023

Q2.

This question is about chemical reactions and electricity.

(a) The diagram shows the apparatus used in the production of electrical energy in a simple cell.

The zinc electrode dissolves in the electrolyte forming Zn²⁺(aq) ions.

	(i)	Draw an arrow on the diagram to show the direction of electron flow.	[1]
	(ii)	Write the ionic half-equation for the reaction that occurs when the zinc electrode dissolve	es.
			[2]
(b)	The met	e reading on the voltmeter can be increased if either zinc or iron is replaced by anoth	ner
	(i)	Name a metal that can replace zinc and increase the reading on the voltmeter.	
			[1]
	(ii)	Name a metal that can replace iron and increase the reading on the voltmeter.	
			[1]
(c)	Fue	el cells are used to generate electricity.	
	(i)	Name the reactants in a fuel cell.	
			[1]
	(ii)	Name the waste product of a fuel cell.	
			[1]

(d)	Ele	ctricity can be used to break down aqueous or molten ionic compounds.
	(i)	Name the process which uses electricity to break down aqueous or molten ionic compounds
		[1
	(ii)	Explain why the ionic compound needs to be aqueous or molten.
		[1
(e)	Brir	ne is concentrated aqueous sodium chloride.
	(i)	Name three substances which are manufactured by passing electricity through brine.
		1
		2
		[3
	(ii)	Name a different substance formed when molten sodium chloride is used instead of concentrated aqueous sodium chloride.
		[1
		[Total: 13

Q3.

The names of four esters are listed.

methyl propanoate ethyl propanoate propyl propanoate butyl propanoate

		watty proparious	
(a)		ers are a family of organic compounds with similar chemical properties. They can resented by the formula $C_nH_{2n}O_2$.	be
	(i)	State the name given to a family of organic compounds with similar chemical properties	S .
			[1]
	(ii)	Explain why members of a family of organic compounds have similar chemical properties	es.
			[1]
	(iii)	State the name given to a formula such as $C_nH_{2n}O_2$.	
			[1]
	(iv)	Determine the value of 'n' in butyl propanoate.	
			[1]
(b)	All f	four of the esters in the list are liquids at room temperature.	
	Nar	me the technique used to separate ethyl propanoate from a mixture of the four esters.	
			[2]
(c)	ΔII f	four esters can be made by reacting different alcohols with the same substance.	
ω,	(i)	Name this substance and draw its structure. Show all of the atoms and all of the bonds	
	(')	name	
		structure	
		I	[2]
	(ii)	Name the alcohol used to make methyl propanoate.	
			[1]

(a)		ier esters, not in the list, nave the same molecular formula as propyl propanoate, but diπeren ictures.	π
	(i)	State the term used to describe substances with the same molecular formula but different structures.	ıt
		[1]
	(ii)	Name two esters with the same molecular formula as propyl propanoate.	
		1	
		2	
		[2	.]
(e)	Pol	yesters can be made from the two different molecules shown.	
		н—о—с—о—н	
		and	
		н—0—н	
	(i)	Complete the diagram to show a section of the polyester made from these two molecules include all of the atoms and all of the bonds in the linkages.	ì.
		[3	[
	(ii)	Name the type of polymerisation that takes place when this polymer forms.	
		[1	1
	/:::\		,
	(iii)	Name a polyester.	
		[1]
		[Total: 17]

Q4.

Sulfuric acid is manufactured by an industrial process. Sulfur is obtained from sulfur-containing metal ores.

The sulfur in the metal ore is converted to sulfur dioxide which is then oxidised to sulfur trioxide as shown.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

(a)	Nar	me a metal ore which contains sulfur.
		[1]
(b)	Des	scribe the process which converts metal ores to sulfur dioxide. [1]
(c)	Nar	me the industrial process used to manufacture sulfuric acid. [1]
(d)	The	e reaction that produces sulfur trioxide is an equilibrium. The forward reaction is exothermic.
	(i)	State the temperature and pressure used to make sulfur trioxide.
		temperature =°C
		pressure = atm [2]
	(ii)	Name the catalyst used.
		[1]
	(iii)	Describe two features of an equilibrium.
		1
		2[2]
	(iv)	State the effect, if any, on the position of equilibrium when the following changes are made.
		Explain your answers.
		temperature is increased
		[1]

[Total: 9]